115 research outputs found

    Drivers of intrapopulation variation in resource use in a generalist predator, the macaroni penguin

    Get PDF
    Intrapopulation variation in resource use occurs in many populations of generalist predators with important community and evolutionary implications. One of the hypothesised mechanisms for such widespread variation is ecological opportunity, i.e. resource availability determined by intrinsic constraints and extrinsic conditions. In this study, we combined tracking data and stable isotope analysis to examine how breeding constraints and prey conditions influenced intrapopulation variation in resource use in a generalist predator, the macaroni penguin Eudyptes chrysolophus. Isotopic variation was also examined as a function of breeding success, individual traits and individual specialisation. Variation in isotope ratios was greatest across multiple tissue types when birds were able to undertake mid-range foraging trips (i.e. during incubation and pre-moult). This variation was highly consistent between years that spanned a 3-fold difference in local prey Euphausia superba density, and was also highly consistent at the individual level between 2 years that had similar prey densities. Furthermore, by comparing our results with previous work on the same population, it appeared that a decrease in local prey availability can also increase intrapopulation variation in resource use during periods with more restricted foraging ranges (i.e. during brood-guard and crèche). This study highlights the importance of considering ecological interactions that operate on multiple spatio-temporal scales when examining the drivers of resource use in populations of generalist predator

    AI for Everyone? Critical Perspectives

    Get PDF
    We are entering a new era of technological determinism and solutionism in which governments and business actors are seeking data-driven change, assuming that Artificial Intelligence is now inevitable and ubiquitous. But we have not even started asking the right questions, let alone developed an understanding of the consequences. Urgently needed is debate that asks and answers fundamental questions about power. This book brings together critical interrogations of what constitutes AI, its impact and its inequalities in order to offer an analysis of what it means for AI to deliver benefits for everyone. The book is structured in three parts: Part 1, AI: Humans vs. Machines, presents critical perspectives on human-machine dualism. Part 2, Discourses and Myths About AI, excavates metaphors and policies to ask normative questions about what is ‘desirable’ AI and what conditions make this possible. Part 3, AI Power and Inequalities, discusses how the implementation of AI creates important challenges that urgently need to be addressed. Bringing together scholars from diverse disciplinary backgrounds and regional contexts, this book offers a vital intervention on one of the most hyped concepts of our times

    ωρ\omega-\rho Mixing and the ωππγ\omega\to\pi\pi\gamma Decay

    Full text link
    We reexamine the ωπ0π0γ\omega \to \pi^{0} \pi^{0} \gamma decay, adding the effect of ωρ\omega-\rho mixing to the amplitude calculated with the aid of chiral perturbation theory and vector meson dominance. We predict the neutral decay to occur with a width of Γ(\Gamma(\omega \to \pi^{0} \pi^{0} \gamma )=(390±96)eV) =(390\pm96) {\rm eV} and also analyze the effect of the ωρ\omega-\rho mixing on the Γ(\Gamma(\omega \to \pi^{0} \pi^{0} \gamma )/Γ()/ \Gamma(\omega \to \pi^{+} \pi^{-} \gamma )) ratio. Several remarks on the effect of ωρ\omega-\rho mixing on certain radiative decays of vector mesons are presented.Comment: 10 pages, LaTeX, 1 ps-figure. Submitted to Phys. Rev.

    Quantitative Treatment of Decoherence

    Full text link
    We outline different approaches to define and quantify decoherence. We argue that a measure based on a properly defined norm of deviation of the density matrix is appropriate for quantifying decoherence in quantum registers. For a semiconductor double quantum dot qubit, evaluation of this measure is reviewed. For a general class of decoherence processes, including those occurring in semiconductor qubits, we argue that this measure is additive: It scales linearly with the number of qubits.Comment: Revised version, 26 pages, in LaTeX, 3 EPS figure

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    e+e- annihilation to (pi0 pi0 gamma) and (pi0 eta gamma) as a source of information on scalar and vector mesons

    Full text link
    We present a general framework for the model-independent decomposition of the fully differential cross section of the reactions e+e- -> gamma* -> (pi0 pi0 gamma) and e+e- -> gamma* -> (pi0 eta gamma), which can provide important information on the properties of scalar mesons: f0(600), f0(980) and a0(980). For the model-dependent ingredients in the differential cross section, an approach is developed, which relies on Resonance Chiral Theory with vector and scalar mesons. Numerical results are compared to data. The framework is convenient for development of a Monte Carlo generator and can also be applied to the reaction e+e- -> gamma* -> (pi+ pi- gamma).Comment: 15 pages, 12 Figures, 4 Tables; LaTeX svjour style; update to the version accepted for publication in the European Physical Journal
    corecore